Surname	Centre Number	Candidate Number
Other Names		2

GCE A level

1324/01

PHYSICS - PH4

Oscillations and Fields

A.M. MONDAY, 20 June 2016

1 hour 30 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	13			
2.	12			
3.	9			
4.	11			
5.	11			
6.	10			
7.	14			
Total	80			

ADDITIONAL MATERIALS

In addition to this examination paper, you will require a calculator and a **Data Booklet**.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

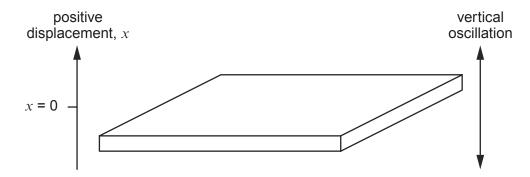
INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 80.

The number of marks is given in brackets at the end of each question or part question.

You are reminded of the necessity for good English and orderly presentation in your answers.

You are reminded to show all working. Credit is given for correct working even when the final answer given is incorrect.


	⊏xamme
	only
Answer all questions.	1
·	

1.	(a)	State:			
		(i) Newton's	second law of motion;		[2]
		(ii) the princip	ple of conservation of m	omentum.	[2]
	(b)	Two discs A an surface slide di speed of disc A	d B of masses $m_{\rm A}$ = 0.1 rectly towards each oth is 2.40 m s ⁻¹ and the sp	$2 \mathrm{kg}$ and m_B = 0.24 kg on a friction her and collide head-on. Before the deed of disc B is 1.70 m s ⁻¹ .	nless horizontal ne collision the
		Before collision	2.40 m s ⁻¹ A $m_{\rm A} = 0.12 \text{kg}$	1.70 m s ⁻¹ B $m_{\rm B} = 0.24 \rm kg$	
		(i) After the Determine	collision the direction e the speed of disc B af	of disc A is reversed. Its speed ter collision.	d is 2.24 m s ⁻¹ . [3]

(ii)	i) Calculate the total kinetic energy lost during the collision.			
(iii)	The collision duration is 0.30s. Calculate the mean force on disc A and state it direction.			

1324 010003

2. A horizontal platform oscillates vertically with Simple Harmonic Motion (shm).

(a) The amplitude, A, of oscillation is 0.030 m. The frequency, f, is 0.50 Hz. State what is meant by:

(i) amplitude, A; [1]

(ii) frequency, f. [1]

(b) Taking the platform to be at the centre of oscillation (x = 0) when time, t = 0 calculate:

(i) the maximum velocity of the platform; [2]

(ii) the velocity of the platform at a displacement of $x = +0.020 \,\mathrm{m}$; [3]

	ц,
	C
4	
2	C
က	$\overline{}$
$\overline{}$	

(iii)	the maximum acceleration of the platform. [2]
•••••		
In an	experiment a small coin is placed on the platform.	

(c)

The platform now oscillates at a frequency of 1.00 Hz. The frequency of oscillation is then increased in equal steps of 0.50 Hz, keeping the amplitude constant at 0.030 m. Determine the lowest frequency at which the coin loses contact with the platform. Explain your reasoning clearly.

[3]

3. Helium gas is contained in a closed cylinder with a leak-proof moveable piston at one end. Initially the volume is $1.2\times 10^{-3} \, \text{m}^3$, the pressure is 3.0×10^5 Pa and the temperature is 275 K. (Relative molecular mass of helium = 4.0.)

(a)	(i)	Calculate the mass of the gas in the cylinder.	[2
	(ii)	Calculate the rms speed of the molecules.	[2]
	•••••		
(b)	The Calc	volume of the gas is increased to $1.8 \times 10^{-3} \text{m}^3$ at constant pressure. culate:	
	(i)	the work done by the gas;	[2]
	•••••		
	•••••		

(ii)	the heat supplied to the gas.	[3]
•••••		

1324

ха	m	in	е
^	nl	٧/	

(a)	Explain what is meant by the	rmal equilibrium.	
(b)	is left to reach thermal equilibr	d temperature 17 °C are placed in the water, a rium once again. Describe in terms of heat flow een the saucepan, water and vegetables. <i>(Ca</i>	s how the
(c)	Calculate the final temperature heat capacities below.	re of the saucepan, water and vegetables give	en the spe
(c)		re of the saucepan, water and vegetables give Specific heat capacity / Jkg ⁻¹ ° C ⁻¹	en the spe
(c)		· · · · · ·	en the spe
(c)	Water Saucepan	Specific heat capacity / Jkg ⁻¹ °C ⁻¹	en the spe
(c)	heat capacities below. Water	Specific heat capacity / Jkg ⁻¹ °C ⁻¹ 4200	en the spe
(c)	Water Saucepan	Specific heat capacity / Jkg ⁻¹ ° C ⁻¹ 4 200 500	en the spe
(c)	Water Saucepan	Specific heat capacity / Jkg ⁻¹ ° C ⁻¹ 4 200 500	en the spe
(c)	Water Saucepan	Specific heat capacity / Jkg ⁻¹ ° C ⁻¹ 4 200 500	en the spe

© WJEC CBAC Ltd. (1324-01)

(d)	Explain what will happen to the final temperature if the system is not completely isolated from the surroundings. [2]	Examiner only
•••••		
•••••		

ха	miı	ne
0	nlv	,

5. The	e ma	ass of the Moon is 7.34 $ imes$ 10 22 kg and its mean radius is 1.74 $ imes$ 10 6 m.	
(a)	Calculate the gravitational field strength at the surface of the Moon.	[2]
(1	b)	A mass, m , is fired vertically from the surface of the Moon at a speed of $400\mathrm{ms^{-1}}$. Show that the greatest height above the surface reached by the mass is 51 km. (Hi the conservation of energy and $V_g = \frac{-GM}{r}$)	
····			
((c)	In many applications an approximate value for the height reached by an object is ob by neglecting the variation in the gravitational field strength with height. Determing value for the height reached by the object in part (b) assuming a gravitational field strength to that at the surface of the Moon.	ne the

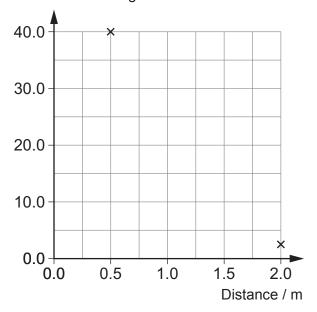
(d)	Hence determine the difference in the heights obtained in parts (b) and (c) as a percentage of the height given in part (b).	Examiner only
(e)	Discuss whether the use of the approximation in part (c) is appropriate in this case. [1]	
•••••		

[2]

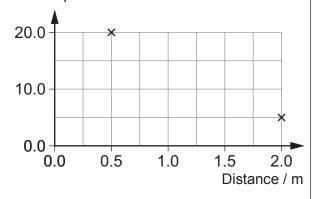
PMT

- **6.** A small sphere has a charge $q = +1.11 \times 10^{-6}$ C.
 - (a) How many electrons have been removed from the sphere?

- (b) On the grids below sketch curves between distances 0.5 m and 2.0 m from the centre of the sphere for:
 - (i) the electric field strength (first grid);
 - (ii) the electric potential (second grid).


The points at 0.5 m and 2.0 m are already shown.

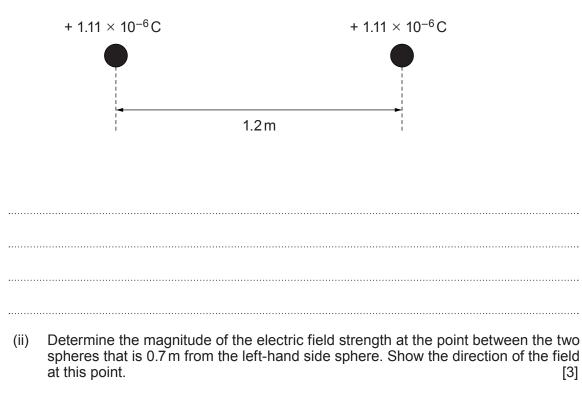
[3]


You may wish to use the approximation: $\frac{1}{4\pi\epsilon_0}$ = 9.0 × 10⁹ F⁻¹ m.

Space for calculations if needed:

Electric field strength / \times 10 3 N C $^{-1}$

Electric potential / \times 10³ V



© WJEC CBAC Ltd.

(1324-01)

Examiner only

A second identical sphere also has a charge of + 1.11 \times 10⁻⁶ C. It is brought from a distant point to a distance 1.2 m from the first sphere. Determine the work required (c) to do this.

Examiner only

4.23	Describe have the constitution of the first	
(a)	Describe how the spectrum was used to determine the orbital speed and orbital p	er
		• • • • •
(b)	Calculate the distance between the star and the planet given that the mass of the 2.21×10^{30} kg. Assume that the mass of the planet is very much smaller than the of the star.	st e r
(b)	2.21×10^{30} kg. Assume that the mass of the planet is very much smaller than the	st e n
(b)	2.21×10^{30} kg. Assume that the mass of the planet is very much smaller than the	st e n
(b)	2.21×10^{30} kg. Assume that the mass of the planet is very much smaller than the	st e n
(b)	2.21×10^{30} kg. Assume that the mass of the planet is very much smaller than the	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n
(b)	2.21 × 10 ³⁰ kg. Assume that the mass of the planet is very much smaller than the of the star.	e n

(c)	Calculate the distance of the star from the centre of mass of the system. [2	
(d)	Use your answers in parts (b) and (c) to determine the mass of the planet.	 :1

END OF PAPER